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1. Phys. A: Math. Gen. 25 (1992) 99-1007. Printed in the tJK 

Some remarks on the generalized Noether theory of point 
symmetry transformations of the Lagrangian 

3 Krause 
Facultad de Fisicn. Pontificia Universidad CatMica de Chile, Casilia 6177, Santiago 22, 
Chile 

Received I1 October 1991 

Abtrad. The Noether theory of infinitesimal point symmetry transfomtions b revbited 
and generalized under the broad scope of the general theory of transformations of 
Lagrangian mechanics. The basic generalized point symmetries of a Lsgrangian function 
are thus obtained and briefly discussed. It is proved that (under very general and physically 
reasonable provisions) the point symmetry group of the Lagrangian i9 necessarily a finite 
Lie group, and a rather simple technique i s  then introduced for the explicit calculation of 
the associated Lie algebra. Next, the algebra obeyed by the set of basic Noether quantities 
(which also includes the traditional Noether constants oi motion) is examined. In this way 
it i5 shown that not all the generalized point symmetries ofa Lagrangian yield an associated 
conservation law. This paper presents three simple examrder of this (not SO well known) 
aspect of the Noether theory 

I. Introduction 

In two previous papers (Aguine and Krause 1991a, b), a brief review of the general 
theory of point transformations in Lagrangian mechanics has been presented, as an 
introduction to theory of symmetry and conservation laws. We devote this paper to 
examining ageneralization ofthe traditional Noether (1918) theory of point transforma- 
tions under this general conceptual framework. 

The relationship between symmetry and conservation Laws plays a major role in 
physics. Thjs relationship arises from an intimate connection between geometry and 
dynamics, which was firmly established by the pioneering work of Sophus Lie, Felix 
Klein, Emmy Noether and others (Kastrup 1983). It also appears in the Einstein theory 
of general relativity as one of its most beautiful crowning achievements. The general 
principle relating symmetrygroups and conservation law was first determined by Emmy 
Noether, who stated it in almost complete generality. In fact, Noether’s theorems afford 
the oldest (and the first mathematically rigorous) instance of this relationship. Although, 
during recent years, an interesting endeavour has been accomplished by many authors, 
in the sense of extending this relation beyond the traditional realm of the Noether 
theory (Currie and Saletan 1966, Lutzky 1979a, b, 1981, Hojman and Harleston 1981, 
Prince and Eliezer 1981, Prince 1983a, b). Our intention in the present series of papers 
is to give a systematic review of this important subject of contemporary classical 
mechanics. However, in these papers we also present some new interesting results 
concerning this issue (cf also Aguirre er al 1991). 
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992 J Krause 

It is unnecessary to emphasize the tremendous impact that the Noether theorems 
have had on theoretical physics over the years. Let us recall here only that, in her 
famous paper, Emmy Noether proves two theorems which form the basis of all 
group-theoretic approaches to conservation laws in physics (and that also prompted 
those non-Noether approaches introduced in recent literature). (Cf, for instance, 
Konopleva and Popov 1981 for a good discussion of both theorems within the context 
of classical field theory.) The first theorem is referred to the case of symmetry of a 
Lagrangian theory with respect to a r-dimensional (i.e. finite) Lie group of local point 
transformations. Her second theorem is valid in the case of symmetry with respect to 
an ‘infinite continuous group’, i.e. a pseudo-group (whose transformations are not 
diffeomorphisms of configuration spacetime, to be sure, for they are functions of the 
derivatives of the dependent variables and, moreover, they also depend on r arbitrary 
functions and their derivatives, instead of r arbitrary parameters) (Konopleva and 
Popov 1981). In this paper we deal only with the first theorem. 

It is conventional in the literature on Noether’s theorem to reserve the name Noether 
symmetries for generators of variational symmetries of the action functional; namely, 
for infinitesimal ‘active’ point transformations which keep the form of the Lagrangian 
function invariant (see e.g. Cantrijn and Sarlet 1981). This convention is useful in 
distinguishing these symmetries from other important group actions in the theory 
(Prince 1982, 1983, 1985). We shall generalize this notion. The generalized version of 
the theorem presented here requires some knowledge of the point symmetry theory of 
Lagrangian mechanics, as developed in our previous papers. This version is perhaps 
not familar to most physicists. Though we keep in it the main features of Noether’s 
first theorem, our approach contains some novelties. Here we shall concentrate our 
attention only on Lagrangian systems with a finite number of degrees of freedom 
(although our novel results can be extended to Lagrangian field theory where they 
may play an important role). Besides this restriction, we would like to remark on the 
following aspects of our approach: 

(i) We do not interpret the infinitesimal diffeomorphisms as variational symmetries 
of the action functional, as one usually does in this subject. 

(ii) Rather, we interpret them as infinitesimal coordinate transformations (in 
configuration spacetime), which keep invariant the form of the Lagrangian function 
by the addition of a suitable infinitesimal gauge transformation. 

(iii) We also take into account the eventual change of scale induced by the required 
symmetry transformations, i.e. we use ’gauge-scaling constants’ in the present formalism 

(iv) We do not assume a closed Lie algebra, obeyed by the generators of the 
symmetry transformation. Rather, the resulting maximal finite Lie algebra of the 
infinitesimal point symmetries of a given Lagrangian appears as a necessary con- 
sequence of the formalism, and we teach the reader how to calculate the realization 
of this algebra in an explicit way. 

(v) Next, an intimate relation between the scaling constants and the structure 
constants of the algebra is found. (By the way, the existence of this relation neatly 
shows that the scaling constants are far from being a spurious trivial element of the 
Lagrangian symmetry formalism.) 

(vi) Finally, in this approach we obtain a simplified version of the classical algebra 
obeyed by the Noether quantities (which are the analogues of the Noether currents 
of classical field theory, for systems with a finite number of degrees of freedom), and 
we show that not all the generalized point symmetries of a Lagrangian function yield 
an associated conservation law. 
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These comments fix the context of this paper, which also includes three miscel- 
laneous examples of the generalized formalism of Noether's point symmetry theory. 

One final remark is perhaps not out of place in this introduction. We are aware of 
the tools and techniques from differential geometry that have been developed 
specifically, over the last 30 years, for studying the calculus of variations, and in 
particular the theory for Lagrangian systems arising from a Lagrangian (see e.g. Cantrijn 
and Sarlet 1981, Prince 1982, 1983,1985). However, we are also aware of the fact that 
the use and the understanding of these powerful (and beautiful) techniques are reserved 
for the specialist, since they do not belong to the current mathematical curriculum of 
most physicists (who, on the other hand, are all interested in Noether's theorem). 
Although in this paper we have avoided the use of differentiat forms, there are several 
occasions in which the language of differential forms would he rather effective. In fact, 
the main tools used in this article are the prolongations of Lie's vector fields. As is 
..,-I1 L",...," ,i:ea-....*:", +---...- " - ~  ....%,, "..:."A .- .I.̂ -*..A.. ^C .L" -.......-... :" r l .  ..e 
vc11 -1."nl., U.LlL.CIIII(11 'unum ',.r wc11 JUllci" L V  ,us J L U Y Y  U' 111c ~ G U L l ~ S U ~ L  rucury  "1 

the calculus of variations (Olver 1986). Note that, in this paper, point symmetries arise 
as coordinate transformations in configuration spacetime, rather than as variational 
transformations. Hence, it would appear, at first sight, that the results in this paper 
are not formulated in an intrinsic (global) fashion for motion of dynamical systems 
in arbitrary manifolds. We would deem such a remark as more formal than real, because 
it is well known since the times of Kretschmann (1917) and Einstein (1918) that every 
Lagrangian theory is automatically generally covariant. This geometric (i.e. absolute) 
fact is not a mere consequence of the notation, or of the mathematical technique, one 
uses to handle the formalism. 

2. Infinitesimal coordinate transformations in  configuration spacetime 

Only finite local transformations were considered in our previous papers. We now 
briefly discuss the change induced in the description of a Lagrangian system by an 
infinitesimal transformation of coordinates in configuration spacetime. Let the transfor- 
mation be given by 

T =  i + & U ( i ,  9) Q' = 9' + &U'( t, 9) (2.1) 
where E is a parameter of smallness, O i  E << 1. (Henceforth all expansions will be taken 
to the first order of approximation in E, as usual.) The generalized velocities OJ, 
associated with the new coordinates, are given by 

(2.2) Q j  = g i + & ( C j  - q;,j) 

where, clearly, U = d u / d i  = U, + ujq', with U, = au/dt, U, = au/aq;, and so forth. Thus, 
for instance, for any given function F ( i ,  9, q ) ,  one has the first-order expansion 

It is useful to introduce the generator u [ ~ ]  of the infinitesimal transformation of 
coordinates (2,1), which is given by the vector field 

(2.4) d o l  E U( i, 9)ajat  + U'(  i ,  q)a/aq' 

0[11 E v[Ol+(CJ - qJli)a/aqj 

as well as the first prolongation of this differential operator, which is defined as 

(2.5) 
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(Olver 1986). (Higher prolongations will not be needed in the present work.) In this 
fashion, equation (2.3) can be written briefly as 

F ( T , Q , ~ ) = ( ~ + & ” [ ’ I ) F ( ~ , ~ , ~ ) .  (2.6) 
It is clear that by means of equations (2.1) one can obtain a new Lagrangian system 

that differs by ‘very little’ from the old system represented by L(t, q, 4). This new 
system can be characterized by a Lagrangian function i( T, Q, Q) given by (cf Aguirre 

d T i ( T ,  0, d) = dt( 1 + E K ) L (  1, q, q)+ E dG(  t, q)  (2.7) 
where the constant K and the gauge function G ( f ,  q )  are arbitrary. (Of course, one 
takes 1+&K and EG(f, 4). in equation (2.7), in order to have i= L+O(E).) 

The motivation Cor equation (2.7) follows. We face here a transformation (i.e. 
equation (2.1)) which we can interpret either from a ‘passive’ or from an ‘active’ 
viewpoint. Although it usually matters little wbicb intuitive point we adopt, at this 
stage we get a better development of these topics by presenting them under the scope 
of the ‘passive’ point of view (which is also more akin to the theory of relativity). 
Thus, equation (2.1) will be thought of as a local transformation of coordinates in 
configuration spacetime. We next consider the action integral S from this point of 
view. In order to calculate a value for the functional S, one has to specify a curve 
q’=c’(t); one then evaluates the action integral along the chosen curve, with q’= 
dc’(t)/dt. In this fashion, given a transformation of coordinates, one writes q’ = 
q’( T, Q) = c’[ I (  T, Q ) ] ,  from which the expression Q’ = C’( T) for the curve follows 
in terms of the new coordinates (provided the conditions required by the implicit 
function theorem are satisfied). Hence we write, quite generally, 

“..A Y _-..” ~ ,nnin\ all” IU‘aUIF ,77,n, 

T2 

TI 
S = j,: d t  L(t,  q, 4) =I d T i ( T ,  Q, d) = 4 

f i ( ~ , ~ , d ) = ~ ( t , q , q ) .  (2.9) 
On the right-hand side of equation (2.8) we integrate along Q’ = C’( T )  between the 
!hi!$ ?i = T [ ! , ,  c(!i)j 2.4 Ti= T[!i ,  C ( ! > ) ! ,  s i x c  T i s  !hP “e% v.ri.b!e ofin!egra!ion. 
Note that equation (2.8) is valid for every chosen curve q’ = c’(f) whatsoever. In other 
words, equation (2.8) entails a simple change of variables in an integral, and therefore 
no question of symmetry for S is involved here. Moreover, according to equation (2.91, 
one proves that gauge transformations of the Lagrangian are invariant under general 
coordinate transformations in configuration spacetime. In this fashion, one justifies 
the following definition: every local transformation of coordinates in configuration 
spacetime induces a new class of Lagrangian functions L, which can be defined by 

(2.8) 

where we define the new Lagrangian by 

fii(~, Q, 6 ) = K L ( t ,  9, q ) + G ( t ,  4 )  (2.10) 

where L is the old Lagrangian, G an arbitrary gauge function, K an arbitrary gauge 
constant and T is the new independent variable. This definition makes sense, because 
equation (2.10) differs from equation (2.9) by an arbitrary gauge transformation. 
(Certainly, instead of equation (2.8), one now has 2 = K S +  G2 - ti,, which corresponds 
to a gauge transformation of the action functional (see Levy-Leblond 1979).) In the 
sequel we shall refer to equation (2.10) as a Lagrangian transformation induced by a 
local coordinate transformation in configuration spacetime (cf also Camprin and Prince 
1985 for some interesting comments on equivalent Lagrangians). 
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Clearly, equation (2.'7) corresponds to an infinitesimal Lagrangian transformation. 
A straightforward expansion in equation (2.7) then yields 

i(t, 4 ,q )  = ~ ( r ,  q. q ) +  ~ ( K L +  6- C L - ~ [ ~ ] L ) .  (2.11) 

This equation entails the general change of form of the Lagrangian that is induced by 
an infinitesimal coordinate transformation in configuration spacetime, to within an 
arbitrary infinitesimal gauge transformation. 

The next task is to obtain an equivalent expression for the change of form of the 
Lagrangian stated in equation (2.11), which is also very useful. To this end, one tries 
to introduce in the right-hand side of equation (2.11) as many total time derivatives 
as possible. After some manipulations, one obtains the following result: 

From the standpoint of mechanics, this is certainly an interesting (and well known) 
result, because, besides the appearance of the variational derivatives 

- (2.13) 

one also recognizes in equation (2.12) the presence of the generalized energy function 
(cf Desloge 1982) 

as well as the generalized momenta 

Hence, equation (2.11) can be written in the following equivalent form: 

(2.14) 

(2.15) 

(2.16) 

This formula corresponds to the 'infinitesimal version' of the general finite law of 
transformation of a Lagrangian already discussed by Aguirre and Krause (1991a), and 
plays a central role in the Noether theory of point symmetries. 

3. The Noether criterion formula for the infinitesimal point symmetries of 
the Lagrangian 

We now begin the study of the Noether theory of infinitesimal point symmetry 
transformations, adopting for this purpose the 'passive' standpoint for interpreting 
diffeomorphisms in configuration spacetime. In this interpretation one refers the point 
symmetries of a system directiy to the chosen representative Lagrangian function, 
instead of considering them as infinitesimal variational symmetries of the action 
functional. The theory obtained in this fashion coincides in its essential features with 
the theory provided by the standard variational approach; however, it also contains 
some new interesting results. 
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Let us first enounce the following result: the necessary and sufficient condition for 
an infinitesimal coordinate transformation 

i = f + &U( t, q )  4̂ ‘ = q ’ + & V J ( t ,  q )  (3.1) 
to be a point symmetry of the Lagrangian L(t,  q, q )  is that there exist a constant K and 
a function u(f, q )  such that 

(3.2) 
holds, where 4’ = 4’ + ~ ( l j ’  - q’t i) .  The proof of this fact is rather simple, if one requires 
that L ( f ,  q, q )  is not a ‘null’ Lagrangian, i.e. L(t,  q, q )  #f( t ,  4). Note that the Lagrangian 
function L that figures in the RHS of equation (3.2) has the same form as that in the 
LHS. Although it looks rather obvious, this is an important result, for it tells us that 
the expression (3.2) for an infinitesimal point symmetry of L is unique, i.e. there is no 
remaining gauge freedom associated with an infinitesimal point symmetry transforma- 
tion of L. 

In this way, according to equation (2.11), one also has the following result: a 
necessary and sufficient condition for u ( t ,  q )  and u’(t ,  q )  to be generators of a point 
symmetry of L ( f ,  q, q )  is that there exist a function v(t, q )  and a constant K ,  such that 

d i L (  ?, i, 8 )  = df(1 f & ~ ) L ( t ,  q, q ) +  E du(t ,  q )  

U = ~ ~ L + U [ ’ ] L - K L  (3.3) 

holds for all values of ( 1 ,  q, q )  where (3.2) is well defined. This formula corresponds 
to the Noether criterion for the generalized infinitesimal point symmetries of a given 
Lagrangian function. 

Once L is given, equation (3.3) provides a test which must be satisfied by the 
functions U, v j  and U, and by the constant K, in order to qualify as generators of a 
point symmetry of L. Furthermore, this formula provides a linear homogeneous 
equation for the determination of U, U’, U and K .  Assume that {U,, U:, uI, K , )  and 
{U*, U!, u2, K ~ )  are two solutions to equation (3.3); then any linear combination of 
these certainly provides another solution of (3.3). Though equation (3.3) is clearly not 
an eigenvalue equation, the problem it sets is very similar to an eigenvalue problem, 
since one has to solve this problem simultaneously for those admissible functions 
{ u ~ ,  U:, U-) which are associated with the admissible constant K ~ .  Namely, equation 
(3.3) corresponds to an ‘algebraic-differential’ linear homogeneous problem (as eigen- 
value differential equations also do). For future reference, let us write equation (3.3) 
more explicitly. It reads 

aL 
(3.4) 

By means of equation (2.11), one can also write the Noether criterion formula (3.3) 
as follows: 

d SL 
d t  
- (uE - u’fi +U) =(U’ -q’) (3.5) 

which holds for all ( t ,  q, q )  and is independent of the q. In fact, using equation (2.12). 
after some manipulations, equation (3.5) can he cast in the equivalent form 

(3.6) Eli -pjd’+ U = v[OIL - K L  
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where all terms containing the q manifestly cancel out. Equations (3.3)-(3.6) are 
completely equivalent, for they correspond to different ways of writing the Noether 
criterion formula. They all appear in the current literature (with K = 0); as a matter of 
fact, they have different important uses. 

4. The basic point symmetries of the Lagrangian 

The Noether criterion formula has a constructive character, to which we now turn our 
attention. Equation (3.3) affords a system of equations which must be satisfied by the 
generators, and the associated gauge transformation leading to an infinitesimal 
Lagrangian transformation that keeps L invariant. One obtains these equations in the 
following manner. 

Given the Lagrangian L as a known function of 1, q and q, one expands equation 
(3.3) in terms of the power of the generalized velocities, observing that the q do not 
appear as arguments in the unknown functions u(t ,  q ) ,  ~ ’ ( 1 ,  q )  and u(t, 4 ) .  In con- 
sequence, by means of the expansion coefficients of the different powers of the q (once 
suitably symmetrized), one separates equation (3.3) into a system of linear 
homogeneous equations obeyed by {U, U’, U, K } .  

For instance, for the sake of concreteness, let us assume that the Lagrangian is of 
the standard form 

L(t ,  4, q ) = f A j k ( t ,  q)4’qk+r,(t, q ) q ’ - @ ( t ,  4 )  (4.1) 

with Ajh =Akj .  In this case, equation (3.4) becomes separated into the following system: 

Ju Ju JU 
A’\,*-+ A,,,’:+ Ahm - = 0 

Jq” J q  Jq’ 
(4.2a) 

(4.26) 
au J u m  aU” ah aAlk - Ajk -+ A,, 7 + A k m  -+> U +- U + A;kK = 0 

Jq’ J t  J q  J t  J q  

au JU‘  JU ar, JUk Jr, , 

Jq’ Jq’ Jq’ J t  ’* J t  J q k J  ’ o--r,-+---.-~ u + r K = o  (4 .2~)  

(4.2d) 

which is linear and homogeneous indeed. In the most interesting case of a non-singular 
Lagrangian system (i.e. when A(t, q )  =det(A,*) # O), equation (4.2a) yields Ju/Jq’  =O, 
for j = i, . . . , n, and these equations simpiify a great deai. 

It must be remarked that this approach is very general, since it  can be applied to 
all polynomial Lagrangian functions of the q. Moreover, it can be applied under rather 
weak assumptions concerning the analytic properties of the Lagrangian as a function 
of the q. (Plainly, a negative power of some generalized velocity q’ is ruled out in 
every reasonable Lagrangian function one can conceive, for otherwise the mechanical 
system would not be well defined at q’ = 0.) It is also important to remark that the 
constant K (i.e. the scaling factor 1 + E K )  is one of the unknowns of the problem. 

Thus, we see that under very general analytical provisions on the function L (which 
are also physically reasonable) one does always get a linear homogeneous system for 
the determination of U, U’, U and K (as in equations (4.2) for instance). Hence, the 
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principle of superposition holds for the problem posed by equation (3.3),  and the 
general solution reads 

U( 1, q )  = k ' u ,  +. . . + k'u, = k"u.( t, q )  

u ' ( t , q ) = k ' u l +  ...+ k'u!-k"u',(t ,q) 
u(t, q )  = q 'U ,+ .  . .+k'u,= k"um(f, q )  
~ = ~ ' ~ . + . . , + ~ , K , = ~ ~ , ~ ~  .. .. I. I 

(4 .3a)  
(4 .36)  
(4.3c) 
(4.36) 

where {U,,, U:, u ~ ,  K . ;  a = 1,. . . ; r }  is a set of basic solutions to equation (3.3),  and the 
k are arbitrary constants. So one has (cf equation (3 .3) )  

ea = U . L + U ~ ] L - ~ . L  

or, for that matter (cf equation (3 .6) ) .  
. roi.  

EU. Um = V i  -l. - KO,!. 

(4.4) 

(4.5) 
for a = 1,. . . , r. 

Usually, most of the K. turn out to he zero. However, there are many Lagrangians 
for which some of the K. are non-zeroth. It is clear that basic solutions of this kind 
correspond to valid symmetries of L, and there is no a priori reason to disregard them. 
In fact, if one sets K = 0 in equation (3.3) from the beginning, one is artificially reducing 
the number of point symmetries of L, since in this way one obtains only a subset of 
basic solutions to equation (3 .3) ,  in a rather arbitrary fashion. On the other hand, there 
also exist many examples of Lagrangians for which equation (3 .3)  has no solution at 
all, besides the trivial one; namely: U = 0, U' = 0, U = 0 and K = 0. 

Of course, the mathematical structure of the linear homogeneous system of 
equations obeyed by {U, U', U, K } ,  and hence the nature of the general solution (in 
particular the dimension r of its basic solution space) depends exclusively on the 
functional form of the Lagrangian. We shall further illuminate this matter by means 
of some examples (see section 7). 

Fortunately, it is not necessary to have complete information about the mathematical 
structure of the problem set by equation (3 .3) ,  in each particular case, in order to 
continue with the general analysis of this subject. The fact that this is a linear 

for this purpose. 
hn---a-o -..I -.-hIa- /..-A-- "11 -nnhn-:cnll.l .o-rn-nhln A-c..-s+n-,-nol ir e-n..nl. 
L 1 " L " Y ~ C " ~ Y Y "  p " " L c L ' L  \",,UC' a11 L 1 L c " 1 a , , 1 c a , ' J  I c a ~ " I I a " I c  c , , rur , r r ra . . r r r ,  .I c " " Y p L  

5. The Lie algebra N ( L )  of the group CY)  

We next discuss one of the main features of the Noether theory, which is seldom 
considered in detail in the current literature. The group G( L) of all point symmetries 
of a Lagrangian L was introduced by Aguirre and Krause (1991b), and its general 
structure was examined by means of the finite elements. It will now be shown that the 
infinitesimal elements of G ( L )  constitute a closed finite Lie algebra, and therefore it 
follows that G( L )  is always a finite Lie group. 

The following lemmas shall be needed presently. We omit the proofs here; lemma 
1 can be proved in a direct way, and lemmas 2 and 3 are well known (Olver 1986). 

Lemma 1 .  For any function q(t ,  q) .  one has 
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Lemma 2. Let U:'' and U% be two generators of infinitesimal point transformations, i.e. 

then the commutator 
up1= u,(t, q )J /J t+u ' . ( t ,  q ) J / J q '  u b ' ] = ~ ~ ( r , q ) ~ / J t + ~ l b ( t ,  ¶)ala¶' (5 .2 )  

[ob"], UP]] = U!,'= u.,a/at+ u:,a/aq' (5.3) 

(5.4) 

( 5 . 5 )  

Lemma 3. If a set of point generators satisfy the Lie algebra 

[obu1, ubo11] = f.'buLul (5.6) 
where J:b denotes the structure constants, then all their higher prolongations satisfy 
the same Lie algebra. In particular, one has 

is given by 

Moreover, for the commutator of their first prolongations one also has 
ULb(  I, 4 )  = u y u ' ,  - u p u : .  [ O l  IO1 

u a b ( t , q ) = o a  u b - o b  % 

[ u ~ l l , U f l 1 3 U [ I l ~  [U1 , - . I .  
ab - u a b  + (ticzb 4 % b ) J / a q ' .  

[U!', I p ]  =f:bu[,'l (5.7) 
for the first prolongations. Furthermore, in such cases the commutators (5.6) (cf also 
equations (5.3) and (5.4)) are given by 

Theorem 1. The basic point symmetry generators tua,  U'.; a = 1 , .  . . , r} of a Lagrangian 
function consitute a basis for the realization of a r-dimensional Lie algebra. 

Proof: Let us define the following functions: 

U a b ( t ,  4 )  E ( U!,"Ub - U b u l U a )  -( K a U b  - K b n a )  ( 5 .9 )  
where clearly each ( K., U=)  corresponds to that gauge transformation which is associated 
with the point symmetry of L generated by ( u a ,  u i ) .  We then evaluate uaoh in a 
straightforward manner, using for this purpose equation (4.4) and lemmas 1 and 2. 
Thus, we get 
(i.6 f (K,,&b - K b U a )  

[ O l  d 
= - ( u ! , u b b  - Ob ua) 

dt 
[ I 1  ' = + U y u b  - ubua - U, ua 

= U a ( & b -  U b L ) - U b ( & o  - UaL) + u!,"(UbL+ U',l'L- K h L )  
- . , ! ' I ( * ;  r + ,.['I - Y r 

" 0  \.-o-, " Y  m a - ,  

= ti.(o',l]~- K,L) - U,,( u ~ I L -  K.L) + I&']( U ~ L )  - U ! ] (  U,L) 

= K . ( U ~ L +  @ L ) -  K~(U.L+ U Y I L )  + L ( u ~ ~ ] u , ,  -~b'lti,)+ U ~ , L  

= K . ( U ~ + K ~ L )  - K ~ ( U ~ + K . L ) +  u~?L+ L- ( u ~ " ] u , )  - &Ub 

+[U!,", ul,"]]~ - K , , u ~ ~ ] L +  K . U ~ ] L  

d 
dr 

d 
- - ( u ~ l U u ) + U b l i .  

dr 

(5.10) 
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i.e 

UOb = liabL+ ubb]L. (5.11) 

This result evidently corresponds to equation (4.4), with 

Kab = 0. (5.12) 

This means that thegenerators (uab, uAb) ofthe commutator vi' (as defined in equations 
j5.4jj  ana  the associated gauge function crab (defined in equation (5.9)) satisfy tne 
Noether formula (3.3), with the particular value K . ~  = O  for the constant K.  Hence, as 
a consequence of the superposition principle (cf equations (4.3)), it follows that 
equation (5.6) holds. This finishes the proof of the theorem. U 

Let us denote by N ( L )  the Lie algebra obeyed by a basic set of point symmetry 
generators of L (we shall briefly refer to this algebra as the Noether algebra of L).  
The result stated in equation (5.12) is particularly interesting. In order to clarify its 
meaning, we shall prove the following theorem. 

meorem 2. Let {ua,  U:; 1 s a  s r }  be a set of basic point symmetry generators, which 
satisfy the Noether algebra N ( L ) ,  and let { K ~ ,  ua; 1 S R S r) be the set of associated 
symmetry gauge transformations, then one has 

u a b ( f r  q ) = f : b ' c r ( f ,  4) (5.13) 

and 

f : b & = O  (5.14) 

where uOb is defined in equation (5.9) and f : b  denotes the structure constants of N ( L ) .  

Proof: Let us define the functions &ab = f:bur; we have 

(5.15) 

where we have used equations (5.8) and (5.11). Now, we see that acc0rdin.g to equation 
(5.15). equation (5.13) +equation (5.14). Furthermore, if one has 6ab#uab and 
fuCbKC # 0, for some a # b, one would have a 'null Lagrangian', i.e. 

(5.16) 

which is certainly not the case. (The addition of a constant to the U is immaterial, of 
course.) Hence, equations (5.13) and (5.14) follow, which proves the theorem. 0 

Note that it is not possible to produce a proof that N ( L )  is a finite Lie algebra, by 
means of purely differential form manipulations or otherwise, without recourse to 
solvingthe Noethersymmetrycriterionformulaforobtaining u . ( f ;  q ) ,  u'.(f; q ) ,  ~ ~ ( 1 ,  q )  

is well known that for systems with a finite number of degrees of freedom (as we are 
discussing here) the set of all generators of N ( L )  forms a Lie algebra which must be 
finite-dimensional because it is a subalgebra of the finite algebra of generators of point 
symmetries of the equations of motion (Sarlet 1983). This fact, however, does not 

"-.A .. ..,ith n - 1 - / m  --A ...inn +ha n . n ~ m n o i t ; ~ n  nrinrinle F'mirthennnr~ it  
all" no, 111111 " - I , .  . , , , .w, al.," ">,.a6 La.., "Yy'*,y"l,L.".. yL...-.Y.-' I " .... - .... -.-, .. 
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lessen the interest of the analysis presented in this paper because (i) it stems from the 
non-Noether realm of the formalism, and (ii) the Noether theory has its own virtues 
that make it interesting in its own right. For instance, this indirect argument for proving 
the finiteness of N ( L )  breaks down for systems with infinite degrees of freedom (i.e. 
continuous fields), because the algebra of generators of point symmetries of the field 
equations of motion is, in general, infinite (Olver 1986); while, on the other hand, the 
Noether approach (as presented in this paper) can still give a finite N ( L )  algebra in 
the case of a Lagrangian field theory. (This matter will be discussed in a forthcoming 
paper.) Interesting as it is, the non-Noether formalism has not superseded the Noether 
theory. 

6. The Noether quantities and constants of motion 

We devote this section to presenting a very brief review of the famous corollary of 
Noether’s first theorem, which establishes the intimate relationship between point 
symmetries and conservation laws in Lagrangian mechanics. Equation (3.5) is par- 
ticularly interesting in this sense, for it immediately yields the following result. 

Theorem 3. If U( 1, q ) ,  U’( t, g) and u(r, q )  correspond to a point symmetry of L(t,  q, q), 
such that K = 0, then 

(6.1) J(1 ,  q, q )  = uE - u’p, + U  

is a constant of motion, i.e. 

j - 0 .  (6.2) 

The proof is immediate, because on the physical trajectories of the system one has 
SLfSq’=O, f o r j  = 1 , .  . . , n. This is one of the most interesting theorems of mechanics. 
However, let us remark that in the present approach it is not true that every point 
symmetry of a Lagrangian yields a conservation law. In fact, if u, U; and U are solutions 
of equation (3.3) such that K # 0, then one gets 

J = - K L  (6.3) 

instead of equation (6.2). In other words, a point symmetry which is committed with 
a change of scale in the associated gauge transformation of the Lagrangian does not 
give rise to a Noether constant of motion. In this case, if one integrates equation (6.3) 
along a physical trajectory of the system, one gets J2 - J ,  = -KS, where S is the value 
of the action integral over the chosen physical path, instead of J2 - J ,  ‘0 as one obtains 
when K = 0. Notwithstanding this feature, let us note a few facts here: 

(i) One has a symmetry of the Lagrangian, in a strict sense, even when it turns out 
that 1 + E K  # 1 (cf equation (3.2)). 

(ii) One gets K # 0 not only as a trivial consequence of scaling the configuration 
spacetime coordinates. 

(iii) If one sets K = O  from the beginning, one is contriving to obtain only a 
subalgebra N,(L) of the full Noether algebra N ( L )  of the Lagrangian. 

According to the results obtained in section 4, with each basic point symmetry 
generator U;’’ of L one can associate a quantity J, given by 

(6.4) J.( 1, q, q )  = u,E - u!pj + ua 
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a = 1 , .  . , , r. These quantities are linearly independent and, certainly, on the physical 
trajectories of the system, they satisfy 

4- (6.5) 
in general. These quantities are the analogues of the 'Noether currents' of classical 
field theory. We shall call them the fundamental Noether quantities of the mechanical 
system. Note that only some of these Noether quantities correspond to the Noether 
constants of motion; namely, those with K, = 0. 

It is also interesting to consider the Noether quantities Job associated with the 
commutator U? of the algebra N ( L ) ,  i.e. 

(6.6) 

We can easily analyse these quantities by means of equations (5.8) and (5.13); thus 
we get Job = f:b(u,E- u!pj+uc),  which means 

ja i - 

J a b ( f ,  4, 4) = U a b E  - d b p j + ' a b .  

J u b = f & J c .  (6.7) 
The most interesting property of these 'commutator quantities' stems from equations 
(5.14) and (6.5), since one has jab = -frCbKcL; that is 

-a" r . i 0  (6.8) 

for all a # b. Hence, all the Noether quantities associated with the Lie brackets (i.e. 
with the commutators of the Noether algebra) are constants of motion. From a 
group-theoretic point of view, this means that the subalgebra N,(L) (namely, the usual 
algebra of infinitesimal symmetries of L, with k = 0) is an ideal of N (  L ) .  

One could say that these considerations settle the basic features of a classical 
'algebra of currents' for Lagrangian systems with a finite number of degrees of freedom. 

7. Three miscellaneous examples 

Finally, in this section we present three applications of the generalized Noether theory 

some important points of the formalism. 

of poini sy"eity itansf-oormaiions in Lagrangian riiei-hanics, -which seive io ;:lustraie 

7.1. I D  free particle 

Let us consider the following I D  Lagrangian system: 

L"( 4) = f q2. (7.1) 

In order to find the point symmetry generators of Lo, we have to solve equation (3.3), 
which now reads 

(7.2) Ju . J u  

Since this equation must be satisfied by all values of q, it becomes separated into the 
following system: 
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One readily integrates these equations. The general solution is given by 

u = k, f + k2+ k3t2 

u = fk ,q2 + ks q 

u = k4q + kst + k6+ k3tq (7.4) 

(7.5) 

and 

K = 2k4 - k ,  

where the k are constants of integration, which play the role of the infinitesimal 
parameters of the group G(L,). The finite realizations of the point symmetry group 
G(L,)  were found in one of our previous papers (Aguirre and Krause 1991b). The 
reader can easily check that 

d i $ =  [ I  + ~ ( 2 k , -  k l ) ] q 2 + 2 ~ d ( f k 3 q 2 +  ksq)  (7.6) 
holds (to the first order of approximation in E )  under the following infinitesimal point 
iransformaiions: 

i = f + E(k,f + k2 + k3t2)  4 = q + E (  k,q + kst + &+ k3tq) .  (7.7) 
Table 1 presents the six basic solutions {U,, u., ua, K - ) ,  the associated Noether 

currents J., and the point symmetry generators uLol, with 1s a < 6, for the Lagrangian 
fg'. The Lie algebra of G(L,)  (i.e. the Noether algebra N ( L , ) )  is shown in table 2, 
from where we read the non-zeroth strxtnrp EOnst2nts, i.e. 

f it = f ; 3  =f ;5 = f : 3  =f ;s = f 2 3  =f& =fL = 1 and f :3 = 2. 

Note that the general rule stated in equation (5.14) is satisfied: f k 3 K , +  f & = O ,  since 
from equations (7.5) we see that the only non-zeroth K :  are K ,  = -1 and ~ ~ = 2 .  As for 
the Noether 'currents' associated with the basic commutators of N ( L , ) ,  the only one 

Table 1. The basic point symmetry generaton [U", U"), the corresponding symmetry gauge 
transformations { m e ,  sa), the associated Noether quantities J,, and the point symmetry 
generators ~6'~. of the free particle standard Lagrangian L,=$j2. 

2 
3 
4 
5 
6 

1 0 0 0 $8 0 '  a/at  
12 f q  ;q2  0 1(4-14)*  0 r ' (a /a t )+  m i a q )  
0 9 0 2 -44 -+do q ( a / a q )  
0 I 4 0 4-14 0 W a q )  
0 1 0 0 - 4  0 a/aq  
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of interest is J2, =fklJI + f f J n  = 25, + 5,. Thus, one has J2]  = q( tq  - q ) ,  which certainly 
yields J,, = 0. 

7.2. The simple harmonic oscillafor 

We next discuss the generalized point symmetries of L= 4(q2-  w2q2) .  Instead of directly 
solving equation (3.3) in this case, we take advantage of the fact that f (q2-  0 2 q 2 )  and 
46‘ are c-equivalent Lagrangians under the diffeomorphisms T = tan or, Q = q sec of, 
with G ( f ,  q )  = f q  tan of and K = o-’ (cf Aguirre and Krause 1991a). Hence, let us write 
?=tan m i =  T +  E ( k , T +  k2+ k 3 T 2 )  = tan o f + E ( k l  tan ot+ k,+ k, tan’wf) ( 7 . 8 ~ )  
6 = 4 sec of= Q+ e(k4Q+ k , T +  k6+ k l T Q )  

(7.86) 
where, clearly, i= f + E U  and i =  q +  EU. In this way, one readily obtains the generators 
U and U: 
mu( f )  = k ,  sin w f  cos w f  + k2 cos2 of + k, sin2 of  (7.9a) 
u(f,  q )  = -k ,q sin2 of  - k,q sin of cos o f +  k,q sin of cos of 

= q sec of + E(k.,q sec w f  + k,  tan ot + k6+ k,q sec of tan or) 

+ k4q + k, sin ot + k6 cos wf .  (7.96) 
In order to obtain the corresponding symmetry gauge transformation (cf equation 

(3.1)) using this approach, one has to recall the formula (Aguirre and Krause 1991a) 
G( T, Q )  = Ku( 1, q )  + G( i, 4) - KG( 1,q) .  

For an infinitesimal point symmetry transformation, this formula yields 
G ( T ,  Q ) = K u ( f , q ) - ~ G ( t ,  q)+u[’”G(f ,q) .  (7.10) 

Hence, since in the present example one has G = f k , q 2 +  k,Q, G=$q’tan of, K = o-’ 
and K = 2 k , - k ,  (cf equations (7.5)), after some simple manipulations, one obtains 
u( t ,q)=-k,wq2sinof  c o s w f - ( k , - k , ) ( ~ / 2 ) q 2 ( c o s 2 0 f - s i n ’ o f )  

+ kSwq cos w f  - k60q sin wt. (7.11) 

In this fashion one solves equation (3.3) for the standard Lagrangian of the simple 
harmonic oscillator, and, one gets the six basic Noether symmetries of this Lagrangian 
system. The Noether quantities of this system are shown in table 3, and the Noether 
algebra is the same as shown in table 2. 

Table3. Gauge-scaling Constant Noether quantities Ja, and Noether constants ofmotion 
1. = O  ( a  = 2 , 3 , 5  and 6 ) ,  far h e  standard Lagrangian of the simple harmonic oscillator. 
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Of course, the Lagrangian f (q2-u2q)  is invariant under time translation: ?= t + &  
(say). One can remedy this omission in the previous formalism by defining a new set 
of parameters (which corresponds to a change of basis in the algebra N ( L ) ) .  As for 
setting K = 0, we wish to remark only that one obtains a SD subalgebra, and that in 
this case the Noether J indeed correspond to five constants of motion. 

7.3. 7'he 3~ Kepler system 

Finally, let us briefly consider the following Lagrangian in ordinary space: 

K 
r L(x,X)=iXZ+- (7.12) 

where K 2 0  is a constant, and r2 = x2, with x = (x, y ,  z) = (x ' ,  x2, x'). In this case, 
equaiions i4.ij yieid 

a,' auk 
axk ax' 
-+-- U( 1 )  + K ]  = o  

auJ am 

at  ax' 
0 -_-= 

(7.13a) 

(7.13b) 

(7 .13~)  

One easily integrates these equations; the general solution reads 

u ( t )  =3k,r + k ,  U' (x) = 2 k,x' + k m ~ h  (7.14) 

u = o  K = k, .  (7.15) 

Hence, in the present formalism, the Noether quantities of a Kepler system correspond 
to 

and 

J ,  = &,xmx*x" j =  1,2,3. (7.18) .... i n e  meaning of J,  and j ,  is ciear. Thus, one has 

j ,  "0 j 4 = o  J5k-L (7.19) 

as required (cf also Prince and Eliezer 1981, Prince 1983). 

P P~-nl...l:-n 
Y. b"..C."Y."~ .CII,m.r.I 

In the enormous amount of literature on Noether's theorem, and on symmetries and 
conservation laws in Lagrangian mechanics, it has always been emphasized that to 
every point symmetry shown by a given Lagrangian there corresponds an associated 



1006 J Krause 

Noether current which is a constant of motion (i.e. the traditional version of Noether's 
first theorem). In  this paper we have proven that this is not always the case. Moreover, 
this has been done not only by means of some few counter-examples; rather, we obtain 
this important result within the context of a general theory of point symmetries of the 
Lagrangian (Aguirre and Krause 1991a, b). 

It is indeed astonishing to leam that change-of-scale symmetry transformations (as 
genuine point symmetries of the Lagrangian) are not related to Noether constants of 
moiion. The r'aci ihai ihey can be regarded as non-iu'oether constants ofmotion jnameiy, 
as trivial symmetries of the Euler-Lagrange equations) does not preclude the import- 
ance of this result. For instance, one does not quantize a system through its equations 
of motion. 

There is no reason to disregard the use of changes of scale in physics. One must 
be aware of the enormous importance that scale transformations have in classical 

great interest in contemporary Lagrangian quantum theories. (Let us recall the renor- 
malization manipulations, which play such a vital role in them.) One could speculate, 
for example, that the main result contained in this paper can shed some light on the 
present problem of anomalies in gauge field quantum theories (cf Jackiw 1985a, b), 
since the Ward identities are the quantum counterpart of the classically conserved 
Noether c '~rxntn  jcf !?zykson and Z.uber !9EK!). Of course, !here in EO room in the 
space allotted here to go into these quantum considerations. (This matter will be 
discussed elsewhere.) 

The final point we wish to make here is that !he Noether theorem of Lagrangian 
mechanics yields one of the most important formalisms of physics, and the better we 
know it, the better will be our understanding of many physical theories which are (or 
can be) embedded in the Lagrangian framework. 

*Lnn-a.:...., ...~^L^":^" ""A "..":..--A-" a.. tL^ ...La- L n - A  ..Le..-"" ^C ^^-L " - ~  ^P 
LllciulcLIcal I I I c i c L L a _ l l l r D  P L l U  rrr~"1CC"Ll&.  "1' LLlci Yl l lc i l  I I a L L u ,  C , L a . " ~ r J  "I aca,C: a,= U, 

Acknowledgments 

The author acknowledges several remarks made by the referees and the adjudicator 
to a previous version of this paper, which have helped to improve it. This work was 
supported in part by FONDECYT, under Contract 0629/91. 

References 

Aguirre M, Friedli C and Krause J 1991 SL(3, R )  as the group of symmetry transformations for all 
one-dimensional linear systems. Ill.  Equivalent Lagrangian formalisms Preprint submitted to J. Math. 
Phys. 

Aguirre M and Krause I 1991a h i .  J. Theor Phys. 30 495 
- 1991b Inr. 1. Theor. Phys. 30 1461 
Camprin M and hince G 1985 Phys. Lett 108A 191 
Cantrijn F and Sarlet W 1981 SIAM Rev. 23 461 
Currie D G and Saletan W 1966 J. Molh. Phys. 7 967 
Derioge E A 1982 Ciasaicai Xeihanics voi i (iu'ew York: wiieyi 
Einstein A 1918 Ann. d.  Phys. 54 241 
Hill E L 1951 Re". Mod. Phys. 23 253 
Hojman S a n d  Harlerton J 1981 J. Moth. Phys. 21 1414 
ltrykran C and Zuber J B 1980 Quontum Field Theory (New York: McGraw-Hill) 
Jackiw R 1985a Comments Nucl. Parr. Phys. IS 99 



The Noether iheory of point symmetry iransformations 1007 

- 1985b Recent Developments in Quantum Field TReory edJ  Ambjom elnl (Amsterdam: Elsevier) pp 203ff 
Kastrup H A 1983 The contributions of Emmy Noether, Felix Klein and Saphus Lie to the modern concept 

of symmetries in physical systems Preprint Institut fiir Theoretische Physik, RWTH Aachen, 5100 
Aachen, Federal Republic af Germany 

Konopleva N P and Popov V N 1981 Gauge Fields (London: Harwood) 
Kretschmann E 1917 Ann. Phys. 53 575 
Levy-Leblond J M 1979 Commun. Moth. Phys. 12 64 
Lutzky M 1979a Phys. Lett. 72A 86 
- 1979b phys. Lett. 75A 8 
-1981 1. Moth. Phys. 22 1628 
Noether E 1918 Noehr. Kcnip. Gessel. Wirsen. GLtingen Moth. Phys. KI, 235-57 
Olver P J  1986 Applications of Lie Groups IO D&-renriol Equations (New York: Springer) 
Prince G 1982 Bull. Austral. Math. Soc. 25 309 
- 1983a Bull. Austral. Math. Soc. 27 53 
- 1983b 1. Phys. A: Moth. Gen. 16 LlO5 
- 1985 Bull. Austral. Math. Soc. 32 299 
Prince G E and Elierer C J 1981 I Phys. A: Math. Gen. 14 587 
Sarlet W 1983 J. Phys. A: Math. Gen. 16 L229 


